### Key Instant Recall Facts ### Year 5 – Autumn 1 ### I know decimal number bonds to 1 and 10. By the end of this half term, children should know the following facts. The aim is for them to recall these facts **instantly**. ### Some examples: | 0.6 + 0.4 = 1<br>0.4 + 0.6 = 1<br>1 - 0.4 = 0.6<br>1 - 0.6 = 0.4 | 3.7 + 6.3 = 10 $6.3 + 3.7 = 10$ $10 - 6.3 = 3.7$ $10 - 3.7 = 6.3$ | |------------------------------------------------------------------|-------------------------------------------------------------------| | 0.75 + 0.25 = 1 | 4.8 + 5.2 = 10 | | 0.25 + 0.75 = 1 | 5.2 + 4.8 = 10 | | 1 - 0.25 = 0.75 | 10 - 5.2 = 4.8 | | 1 - 0.75 = 0.25 | 10 - 4.8 = 5.2 | ### **Key Vocabulary** What do I add to 0.8 to make 1? What is 1 take away 0.06? What is 1.3 less than 10? How many more than 9.8 is 10? What is the **difference** between 0.92 and 10? This list includes some examples of facts that children should know. They should be able to answer questions including missing number questions e.g. $0.49 + \bigcirc = 10$ or $7.2 + \bigcirc = 10$ . ### **Top Tips** The secret to success is practising **little** and **often**. Use time wisely. Can you practise these KIRFs while walking to school or during a car journey? You don't need to practise them all at once: perhaps you could have a fact of the day. If you would like more ideas, please speak to your child's teacher. Buy one get three free - If your child knows one fact (e.g. 8 + 5 = 13), can they tell you the other three facts in the same fact family? <u>Use number bonds to 10</u> - How can number bonds to 10 help you work out number bonds to 100? <u>Play games</u> – There are missing number questions at <u>www.conkermaths.com</u>. See how many questions you can answer in just 90 seconds. There is also a number bond pair game to play. # Key Instant Recall Facts Year 5 – Autumn 2 ### I know the multiplication and division facts for all times tables up to $12 \times 12$ . By the end of this half term, children should know the following facts. The aim is for them to recall these facts **instantly**. Please see separate sheet for all times table facts. #### **Key Vocabulary** What is 12 multiplied by 6? What is 7 times 8? What is 84 divided by 7? They should be able to answer these questions in any order, including missing number questions e.g. $7 \times \bigcirc = 28$ or $\bigcirc \div 6 = 7$ . ### **Top Tips** The secret to success is practising **little** and **often**. Use time wisely. Can you practise these KIRFs while walking to school or during a car journey? You don't need to practise them all at once: perhaps you could have a fact family of the day. If you would like more ideas, please speak to your child's teacher. <u>Speed Challenge</u> – Take two packs of playing cards and remove the kings. Turn over two cards and ask your child to multiply the numbers together (Ace = 1, Jack = 11, Queen = 12). How many questions can they answer correctly in 2 minutes? Practise regularly and see if they can beat their high score. <u>Online games</u> – There are many games online which can help children practise their multiplication and division facts. www.conkermaths.org is a good place to start. <u>Use memory tricks</u> – For those hard-to-remember facts, www.multiplication.com has some strange picture stories to help children remember. # Key Instant Recall Facts Year 5 – Spring 1 ### I can recall metric conversions. By the end of this half term, children should know the following facts. The aim is for them to recall these facts **instantly**. 1 kilogram = 1000 grams 1 kilometre = 1000 metres 1 metre = 100 centimetres 1 metre = 1000 millimetres 1 centimetre = 10 millimetres 1 litre = 1000 millilitres They should also be able to apply these facts to answer questions. e.g. How many metres in 1½ km? ### Top Tips The secret to success is practising **little** and **often**. Use time wisely. Can you practise these KIRFs while walking to school or during a car journey? You don't need to practise them all at once: perhaps you could have a fact of the day. If you would like more ideas, please speak to your child's teacher. <u>Look at the prefixes</u> – Can your child work out the meanings of *kilo-, centi-* and *milli-*? What other words begin with these prefixes? Be practical – Do some baking and convert the measurements in the recipe. <u>How far?</u> – Calculate some distances using unusual measurements. How tall is your child in mm? How far away is London in metres? # Key Instant Recall Facts Year 5 – Spring 2 ### I can identify prime numbers up to 20. By the end of this half term, children should know the following facts. The aim is for them to recall these facts **instantly**. A prime number is a number with no factors other than itself and one. The following numbers are prime numbers: 2, 3, 5, 7, 11, 13, 17, 19 A composite number is divisible by a number other than 1 or itself. The following numbers are composite numbers: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20 **Key Vocabulary** prime number composite number factor multiple Children should be able to explain how they know that a number is composite. E.g. 15 is composite because it is a multiple of 3 and 5. ### Top Tips The secret to success is practising **little** and **often**. Use time wisely. Can you practise these KIRFs while walking to school or during a car journey? You don't need to practise them all at once: perhaps you could have a fact of the day. If you would like more ideas, please speak to your child's teacher. It's really important that your child uses mathematical vocabulary accurately. Choose a number between 2 and 20. How many correct statements can your child make about this number using the vocabulary above? Make a set of cards for the numbers from 2 to 20. How quickly can your child sort these into prime and composite numbers? How many even prime numbers can they find? How many odd composite numbers? # Key Instant Recall Facts Year 5 – Summer 1 ### I can recall square numbers up to 12<sup>2</sup> and their square roots. By the end of this half term, children should know the following facts. The aim is for them to recall these facts **instantly**. | $ ^2 = \times = $ | $\sqrt{1} = 1$ | |------------------------------------------------------------------|-------------------------------------| | $2^2 = 2 \times 2 = 4$ | $\sqrt{4} = 2$ | | $3^2 = 3 \times 3 = 9$ | $\sqrt{9} = 3$ | | $4^2 = 4 \times 4 = 16$ | $\sqrt{16} = 4$ | | $5^2 = 5 \times 5 = 25$ | $\sqrt{25} = 5$ | | $6^2 = 6 \times 6 = 36$ | $\sqrt{36} = 6$ | | $7^2 = 7 \times 7 = 49$ | $\sqrt{49} = 7$ | | $8^2 = 8 \times 8 = 64$ | $\sqrt{64} = 8$ | | $9^2 = 9 \times 9 = 81$ | $\sqrt{81} = 9$ | | $10^2 = 10 \times 10 = 100$ | $\sqrt{100} = 10$ | | $ 1 ^2 = 1 \times 1 = 2 $<br>$ 1 ^2 = 1 \times 1 = 4 $ | $\sqrt{100} = 10$ $\sqrt{121} = 11$ | | 1212 ^ 12 - 144 | $\sqrt{121} = 11$ $\sqrt{144} = 12$ | | | $\sqrt{144} = 12$ | #### **Key Vocabulary** What is 8 **squared**? What is 7 multiplied by itself? What is the **square root** of 144? Is 81 a square number? Children should also be able to recognise whether a number below 150 is a square number or not. ### **Top Tips** The secret to success is practising **little** and **often**. Use time wisely. Can you practise these KIRFs while walking to school or during a car journey? You don't need to practise them all at once: perhaps you could have a fact of the day. If you would like more ideas, please speak to your child's teacher. <u>Cycling Squares</u> – At <a href="http://nrich.maths.org/1151">http://nrich.maths.org/1151</a> there is a challenge involving square numbers. Can you complete the challenge and then create your own examples? <u>Use memory tricks</u> – For those hard-to-remember facts, www.multiplication.com has some strange picture stories to help children remember. # Key Instant Recall Facts Year 5 – Summer 2 ### I can find factor pairs of a number. By the end of this half term, children should know the following facts. The aim is for them to recall these facts **instantly**. Children should now know all multiplication and division facts up to 12 × 12. When given a number in one of these times tables, they should be able to state a factor pair which multiply to make this number. Below are some examples: | $24 = 4 \times 6$ | $42 = 6 \times 7$ | |-------------------|--------------------| | $24 = 8 \times 3$ | $25 = 5 \times 5$ | | $56 = 7 \times 8$ | $84 = 7 \times 12$ | | $54 = 9 \times 6$ | $15 = 5 \times 3$ | ### **Key Vocabulary** Can you find a factor of 28? Find two numbers whose **product** is 20. I know that 6 is a factor of 72 because 6 multiplied by 12 equals 72. ### **Top Tips** The secret to success is practising **little** and **often**. Use time wisely. Can you practise these KIRFs while walking to school or during a car journey? You don't need to practise them all at once: perhaps you could have a fact of the day. If you would like more ideas, please speak to your child's teacher. <u>Play games</u> - There is an activity at <u>www.conkermaths.org</u> to practise finding factor pairs <u>Think of the question</u> – One player thinks of a times table question (e.g. $4 \times 12$ ) and states the answer. The other player has to guess the original question. <u>Use memory tricks</u> – For those hard-to-remember facts, www.multiplication.com has some strange picture stories to help children remember.