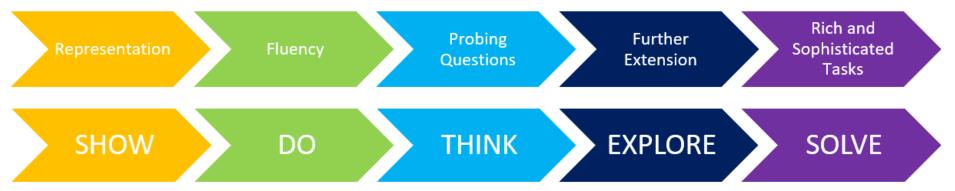
Year 4 Maths Workshop


Tuesday 29th November 2022

Aims:

- ► To understand how maths is taught at Highwood
- ► To understand the age related expectations in maths
- ► To understand how you can help your children at home
- ► To have a better understanding of the maths language used in teaching maths

How is maths taught at Highwood?

- We follow White Rose Hub to help up plan our small steps and use a mastery flow within our lessons
- The process encourages pupils to become fluent in the fundamentals of maths through frequent practice with increasing complexity over time

- Children move through the mastery flow process at their own pace. Some children might be on do while others have moved through the other stages and are now on solve.
- Adults support children, identifying misconceptions and addressing them throughout the lesson
- We build children who are not only inquisitive learners, but resilient problem solvers, who have the confidence to try and try again. They are confident mathematical communicators who can explain, justify and reason

What happens at each stage of the flow?

Representation Fluency Probing Questions Further Extension Rich and Sophisticated Tasks

SHOW

DO

THINK

EXPLORE

SOLVE

Teachers
introduce a
learning
objective
taken from the
NC.

Practical resources, talk partner work, verbalising understanding

Varied fluency happens at this stage.

Children
explore
fluency
questions that
are only about
the objective
being taught.

Questions are used to elicit children's reasoning skills.

They are asked to explain, convince and justify their answers.

It is <u>only</u> about the objective being taught. Questions and problems that explore multiple objectives.

Linked to prior learning.

Questions and problems that explore multiple objectives.

They may not have a clear starting point, need children to problem solve or include trial and error.

Mastery flow

LO: recognise the place value in a 4 digit number.

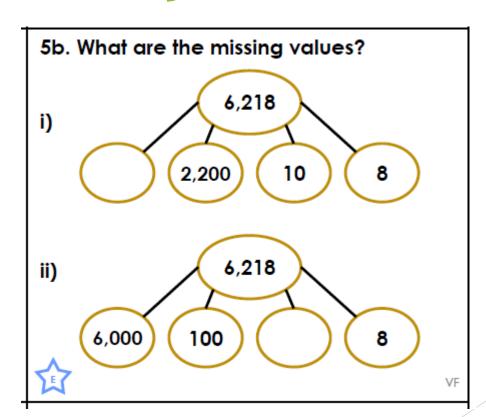
Representation - SHOW

Ten Thousands	Thousands	Hundreds Tens		Ones
	1,000	100	10 10 10	

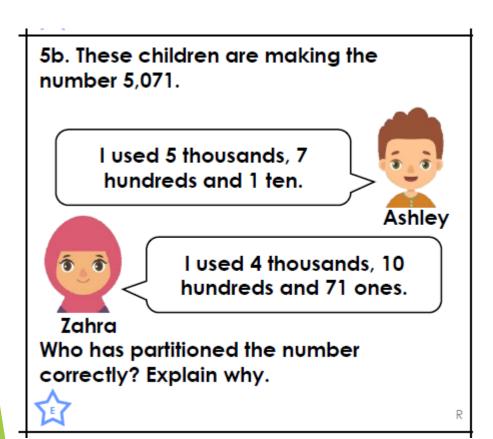
Q: What is the value of the underlined digit?

2<mark>2</mark>44

Answer: 200


This level of answer often involves using physical equipment and practical resources – last week, we used counters to explore factors of numbers by arranging them in rows of 2, 3, 4, 5, 6 and so on. Pupils prove their understanding of a mathematical concept in a concrete way.

Varied Fluency - DO


DO Task 1. Write the VALUE of the underlined digit:

- a) <u>8</u>546
- b) 11<u>8</u>5
- c) 7<u>7</u>77
- d) 12,<u>9</u>01

DO or Fluency tasks are when pupils prove their understanding through applying the concept in the abstract.

THINK

ALWAYS, SOMETIMES, NEVER?

A number containing the digit 9 will be bigger than those that do not.

Use examples to **EXPLAIN** your answer.

THINK tasks involve having to do one or more steps to answer the question and often involve problem solving and explaining your answer.

EXPLORE

Questions and problems that explore multiple objectives.

Linked to prior learning.

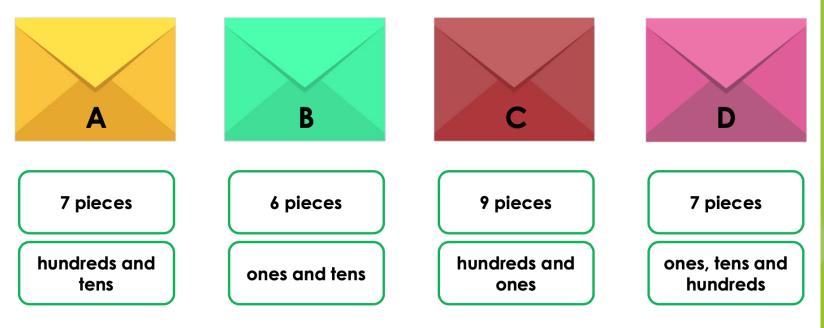
Four-digit Targets

Age 7 to 11 *

You have two sets of the digits from 0 to 9.

0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9

The idea is to arrange these digits in the five boxes to make four-digit numbers as close to the target number as possible.


You may use each digit once only.

largest odd number
largest even number
largest multiple of 3
smallest multiple of 5
number closest to 5000

SOLVE

These are challenging, open-ended, investigative tasks designed to really test a pupils understanding of a concept and their ability to apply it to a context beyond a simple single-answer question. Pupils often have to do multiple cognitive steps to solve these!

1. Emmett puts Base 10 into envelopes. He gives his friends clues as to what is in each one.

Investigate the possible value of each envelope. Find as many possibilities as you can.

Using your findings, discuss which envelope is the most valuable. Explain your answer.

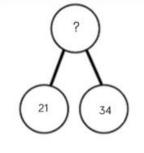
Moving through concrete, pictorial and abstract (CPA)

What is the Concrete Pictorial Abstract in Maths?

The Concrete Pictorial Abstract (CPA) approach is a system of learning that uses physical and visual aids to build a child's understanding of abstract topics.

Pupils are introduced to a new mathematical concept through the use of concrete resources (e.g. fruit, Dienes blocks etc). When they are comfortable solving problems with physical aids, they are given problems with pictures - usually pictorial representations of the concrete objects they were using.

Then they are asked to solve problems where they only have the abstract i.e. numbers or other symbols. Building these steps across a lesson can help pupils better understand the relationship between numbers and the real world, and therefore helps secure their understanding of the mathematical concept they are learning.


We move through these representations as part of the show section of teaching. Children are then exposed to all three during the do, think, explore and solve.

Concrete, pictorial and abstract example

	Make both numbers on a place value grid.	100s 10s 1s	100 + 40 + 6
	grid.		
I			<u>500 + 20 + 7</u> 600 + 70 + 3 = 673
Column method with regrouping	Add up the units and exchange 10 ones for 1 ten. As children move on to decimals, money and decimal place value counters can be used to support learning. NB By Year 4 children will progress on to	100s 10s 1s Children can draw a pictoral representation of the columns and place value counters to further support their learning and understanding. NB Addition of money needs to have £	As the children progress, they will move from the expanded to the compacted method. 146 + 527 673 1 As the children move on, introduce decimals with the same number of decimal places and different. Money can be used here.
	Column method with regrouping	Add up the units and exchange 10 ones for 1 ten. As children move on to decimals, money and decimal place value counters can be used to support learning.	Add up the units and exchange 10 ones for 1 ten. As children move on to decimals, money and decimal place value counters can be used to support learning. NB By Year 4 children will progress on to 100s 10s 1s 100s 1s Children can draw a pictoral representation of the columns and place value counters to further support their learning and understanding. NB Addition of money needs to have for the columns and place value counters to further support their learning and understanding.

Variation (conceptual) - what something is and what it isn't

Conceptual variation; different ways to ask children to solve 21 + 34

? 21 34

Word problems:

In year 3, there are 21 children and in year 4, there are 34 children. How many children in total?

21 + 34 = 55. Prove it

21

<u>+34</u>

21 + 34 =

= 21 + 34

Calculate the sum of twenty-one and thirty-four.

Missing digit problems:

10s	1s		
00	0		
000	?		
?	5		

	Maths – End of Year 4 Expectations						
		New National Curriculum Objectives					
		count backwards through zero to include negative numbers					
		count in multiples of 6, 7, 9, 25 and 1 000					
		find 1 000 more or less than a given number					
	_	order and compare numbers beyond 1 000					
	E D	compare numbers with the same number of decimal places up to two decimal places					
	ber	identify, represent and estimate numbers using different representations					
	and	read Roman numerals to 100 (I to C) and know that over time, the numeral system changed to include the					
	Number and Place Value	concept of zero and place value.					
	e Va	recognise the place value of each digit in a four-digit number (
	lue	find the effect of dividing a one- or two-digit number by 10 and 100, identifying the value of the digits in the					
		answer as units, tenths and hundredths					
		round any number to the nearest 10, 100 or 1 000					
		round decimals with one decimal place to the nearest whole number					
-		solve number and practical problems that involve all of the above and with increasingly large positive numbers					
	s A	add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and					
	dd iti ub tr	subtraction where appropriate					
	Addition and Subtraction	estimate and use inverse operations to check answers to a calculation					
	a g	solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why					
ŀ		recall multiplication and division facts for multiplication tables up to 12 × 12					
	3	multiply two-digit and three-digit numbers by a one digit number using					
	u ti	formal written layout					
	olica	use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1;					
	tion	dividing by 1; multiplying together three numbers					
	Multiplication and Division	recognise and use factor pairs and commutativity in mental calculations					
	Divi	solve problems involving multiplying and adding, including using the distributive law to multiply two digit					
	sion	numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are					
		connected to m objects					
Ī		count up and down in hundredths					
	Fra	recognise that hundredths arise when dividing an object by one hundred					
	ctio	and dividing tenths by ten					
	Fractions, decimals and Percentages	compare numbers with the same number of decimal places up to two decimal places					
	lecin	round decimals with one decimal place to the nearest whole number					
	nals	recognise and show, using diagrams, families of common equivalent fractions					
	and	recognise and write decimal equivalents of any number of tenths or hundredths					
	Perc	recognise fraction and decimal equivalence ¼ , ½ , ¾					
	ent	add and subtract fractions with the same denominator					
	ages	find the effect of dividing a one- or two-digit number by 10 and 100, identifying the value of the digits in the					
		answer as ones, tenths and hundredths					
		solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities,					
	Problem Solving	including non-unit fractions where the answer is a whole number					
	™	solve simple measure and money problems involving fractions and decimals to two decimal places.					
H	>						
	Algebra	Perimeter can be expressed algebraically as 2(a + b) where a and b are the dimensions in the same unit.					
	2						

What is my child taught? What are the age related expectations?

_	estimate, compare and calculate different measures, including money in pounds and pence
Measurement and Time	measure and calculate the perimeter of a rectilinear figure
nent	find the area of rectilinear shapes by counting squares
and	read, write and convert time between analogue and digital 12 and 24-hour clocks
Time	solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days
	convert between different units of measure (e.g. kilometre to metre; hour to minute)
	read, write and convert time between analogue and digital 12 and 24-hour clocks
G	identify lines of symmetry in 2-D shapes presented in different orientations
eom	complete a simple symmetric figure with respect to a specific line of symmetry
Geometry Shape and Position	compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes
pe ar	identify acute and obtuse angles and compare and order angles up to two right angles by size
id Po	describe positions on a 2-D grid as coordinates in the first quadrant
ositic	describe movements between positions as translations of a given unit to the left/right and up/down
š	plot specified points and draw sides to complete a given polygon
	interpret and present data using bar charts, pictograms and tables
Statistics	solve one-step and two step questions [e.g. 'How many more?' and 'How many fewer?'] using information presented in scaled bar charts and pictograms and tables.

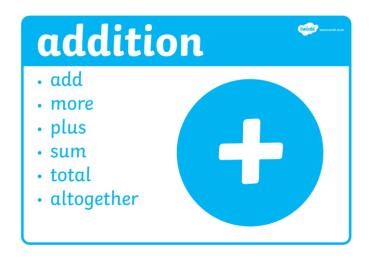
http://www.kingsleycp.cheshire.sch

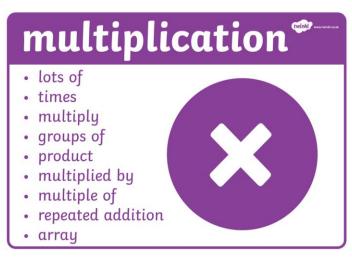
Mental Maths

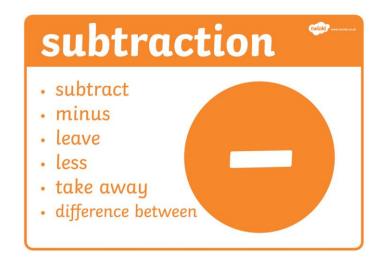
- A key focus at Highwood this year: mental maths time tables 4 times a week with an new school approach
- Sessions dedicated to mental arithmetic
- Building fluency and speed
- Continuous recall of the 4 operations
- ► Times table check at the end of Y4 pupils need to answer multiplication questions up to 12 x 12.

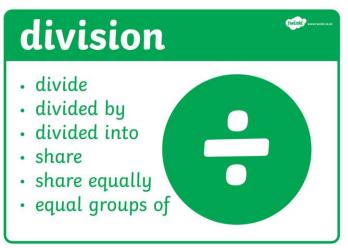
By the end of Year 4, children will be expected to know all of their times tables up to 12 x 12 by heart. This means not only recalling them in order but also being able to answer any times table question at random, and also knowing the related division facts. For example, in knowing that $6 \times 8 = 48$, children can also know the related facts that $8 \times 6 = 48$ and that $48 \div 6 = 8$ and $48 \div 8 = 6$. This expertise will be particularly useful when solving larger problems and working with fractions.

	(5 mins)	(5 mins)		(5 mins)	(5 mins)
	Timetable booklet for focus	Timetable booklet for focus		Timetable booklet for focus	Timetable booklet for focus
	times table and marking	times table and marking		times table and marking	times table and marking
Year 4	(20 mins)	(20 mins)		(20 mins)	Use of Sumdog/ TTRS to
	Daily 10/ fast 10 arithmetic	Exploring 3, 6, 9 and 7	Franch	Exploring 3, 6, 9 and 7	assess and find key facts
10:45-	Go through answers and	tables/ introduction of times	<u>French</u>	tables/ introduction of times	
11:15am	address any misconceptions	table with number stick		table with number stick	
		Teaching of one key fact per		Teaching of one key fact per	ILMUT ABLUT
		day from key times table		day from key times table	ROCK TARY
		focus e.g. 4 x 2		focus e.g. 4 x 2	

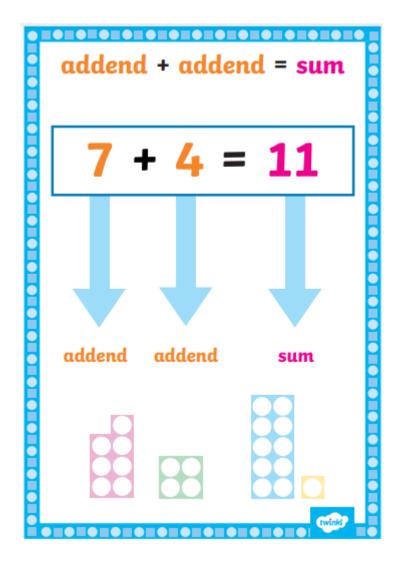

Mathematical language - place value

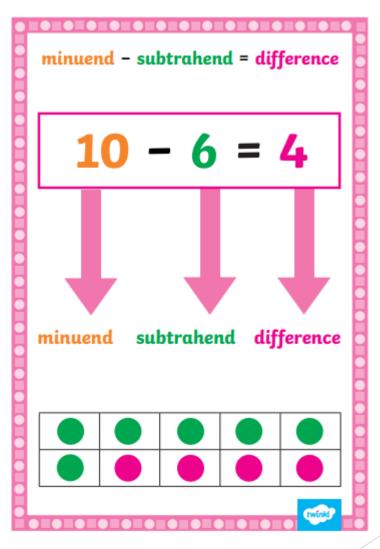

Place value is crucial throughout all arenas of the maths curriculum. It is the value of each digit e.g. 582 is made up of 5 hundreds (500) 8 tens (80) and 2 ones (2)

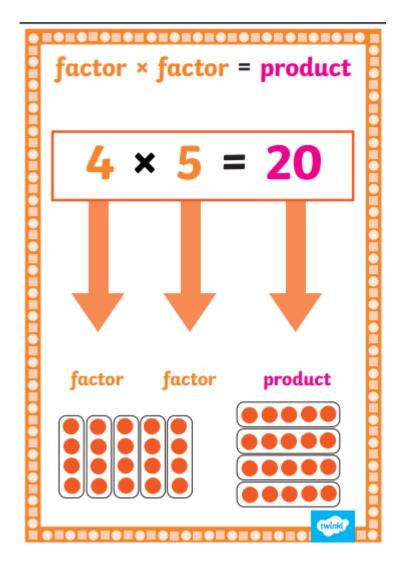

- Importance of saying ones and not units
- Decimal points never move
- Understanding that each value is x10 more/ less

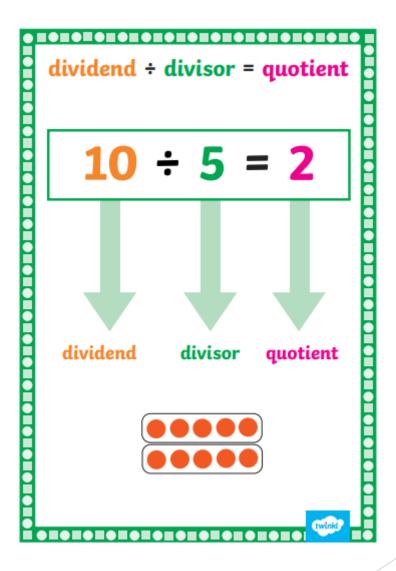

Tth	Th	н	т	0	t	h
Ten Thousands	Thousands	Hundreds	Tens	Ones	Tenths 0.1	Hundredths 0.01
10 000	1000	100	10	1	$\frac{1}{10}$	$\frac{1}{100}$

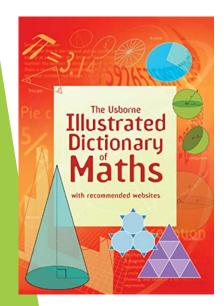
Mathematical language - 4 operations

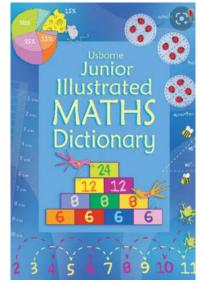


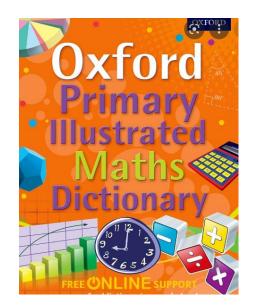



Not using sum for calculation. Sum means add!


Mathematical language


Mathematical language





How to help at home

- Times table practice (up to 12 x 12)
- ► The four operations in the real world e.g. shopping, when budgeting, saving money, getting discounts at sales...
- Recall number bonds to 100 (99+1, 27+73, 17+83)
- Using the maths booklets/ information from maths newsletter
- Using Sumdog/ TTRS
- Always practice telling the time!

